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Abstract 
 
Bryde’s-like whales are a complex of medium-sized baleen whales that occur in tropical waters 

of all three major ocean basins.  Currently, a single species of Bryde’s whale, Balaenoptera 

edeni Anderson, 1879, is recognized, with two subspecies, Eden’s whale, B. edeni edeni and 

Bryde’s whale, B. edeni brydei (Olsen, 1913), although some authors have recognized these as 

separate species.  Recently, a new, evolutionarily divergent lineage of Bryde’s-like whale was 

identified based on genetic data and was found to be restricted primarily to the northern Gulf of 

Mexico (GOMx).  Here, we provide the first morphological examination of a complete skull 

from these whales and identify diagnostic characters that distinguish it from the other medium-

sized baleen whale taxa.  In addition, we have increased the number of genetic samples of these 

Bryde’s-like whales in the GOMx from 23 to 36 individuals, all of which matched the GOMx 

lineage.  A review of Bryde’s-like whale records in the Caribbean and greater Atlantic supports 

an isolated distribution for this unique lineage, augmenting the genetic and morphological body 

of evidence supporting the existence of an undescribed species of Balaenoptera from the Gulf of 

Mexico.  
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1 | INTRODUCTION 
 
Despite being some of the largest animals on the planet and carrying the moniker of ‘charismatic 

megafauna’, it is always surprising to be reminded that the taxonomy and systematics of 

cetaceans, even today, remain in flux.  Taylor et al. (2017b) surveyed the extant cetacean fauna 

and concluded that of the currently recognized taxa, 32% have a high likelihood of 

underclassification errors and that an accurate taxonomy may contain twice the number of 

subspecies currently recognized.  For example, two subspecies of killer whales (Orcinus orca) 

are currently recognized, but recent studies have suggested there are additional unrecognized 

subspecies or even species (Leduc et al., 2008).  Taylor et al. (2017b) concluded that the primary 

problems encountered when trying to address questions in cetacean taxonomy include the 

difficulty of obtaining skulls or obtaining tissue samples from elusive, often remote and difficult 

to sample taxa, coupled with the legal protections they are given.  Due to these problems, studies 

often have inadequate numbers of samples, and/or an inadequate geographic sampling of these 

typically widely distributed species.  As a result, robust taxonomic inference is often severely 

hindered. 

 

Members of the “Bryde’s whale complex” in the genus Balaenoptera provide an excellent 

example of the historical and contemporary confusion that exists in cetacean taxonomy.  These 

tropical and subtropical, and generally nonmigratory whales, are found in all major ocean basins.  

They are difficult to distinguish visually based on external morphology and are therefore often 

collectively referred to as the “Bryde’s whale complex” or “Bryde’s-like whales.”  Currently a 

single species of Bryde’s whale, Balaenoptera edeni Anderson, 1879, is recognized, with two 

recognized subspecies, Eden’s whale, B. edeni edeni and Bryde’s whale, B. edeni brydei (Olsen, 
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 4 

1913) (Committee on Taxonomy, 2019).  These two subspecies have previously also been 

considered species based on morphological data (Soot-Ryen, 1961; Wada et al., 2003) and 

supported by genetic data (Rosel & Wilcox, 2014; Wada et al., 2003); see Rice (1998) for a 

historical review of differing opinions on the taxonomy of these whales.  Genetic analysis of the 

type specimen for B. edeni has not yet been completed and a type specimen was not designated 

for B. brydei when it was named.  As a result, despite the multiple lines of evidence for species-

level differences, there has been a conservative treatment of the taxonomic rank of these two 

members and they are both currently recognized as subspecies of B. edeni (Committee on 

Taxonomy, 2019).   

 

Balaenoptera edeni Anderson, 1879 was first described from a medium-sized balaenopterid 

whale that stranded in Myanmar in 1871 (Anderson, 1878 [1879]).  They are thought to inhabit 

coastal waters of the Indian Ocean and the western Pacific, with genetically confirmed records 

from the East and South China seas and coastal waters throughout the northern Indian Ocean 

from Oman east to Indonesia (Jayasankar et al., 2009; Kershaw et al., 2013; Kim et al., 2018; Li 

et al., 2019; Rosel & Wilcox, 2014; Sasaki et al., 2006; Wada et al., 2003; Yoshida & Kato, 

1999; Yusmalinda et al., 2017).  To date there are no records from the Atlantic basin or the 

eastern Pacific.  B. brydei Olsen, 1913 was described based on whales taken by the whaling 

industry in Saldanha Bay, South Africa (Olsen, 1913).  These whales are generally associated 

with deeper, more pelagic waters and have a much broader worldwide distribution, with 

genetically confirmed records from the Atlantic, Pacific, and Indian Ocean basins (Alves et al., 

2010; Herath, 2007; Kanda et al., 2007; Kershaw et al., 2013; Kim et al., 2018; Luksenburg et 
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al., 2015; Murakami et al., 2018; Pastene et al., 2015; Penry, 2010; Penry et al., 2018; Rosel & 

Wilcox, 2014; Sasaki et al., 2006; Wada et al., 2003; Yoshida & Kato, 1999).   

 

As recently as 2003, a new species of Bryde’s-like whale was removed from the complex when 

Wada et al. (2003) described a smaller balaenopterid, Omura’s whale, Balaenoptera omurai.  

The authors suggested, based on morphological comparisons of the skull, that B. omurai and the 

two B. edeni subspecies each have diagnostic features in the morphology of the vertex of the 

skull, and that all three should be considered distinct species: B. omurai, B. edeni, and B. brydei.  

Genetic analyses based on mitochondrial DNA (mtDNA) control region sequence data were 

consistent with the morphological distinctiveness of all three taxa, returning well-supported, 

reciprocally monophyletic groupings of the currently recognized B. omurai, B. e. edeni, and B. e. 

brydei (Kershaw et al., 2013; Rosel & Wilcox, 2014; Sasaki et al., 2006).  Interestingly, while 

originally thought to be restricted to the western Pacific and the tropical eastern Indian oceans 

(Cerchio et al., 2019; Yamada, 2009), Omura’s whales have now been recorded from the western 

and central Indian Ocean (Cerchio et al., 2015; Cerchio et al., 2019), and from the eastern and 

western tropical Atlantic Ocean, near and south of the equator (Cypriano-Souza et al., 2017; 

Jung et al., 2016), indicating that the confusion in distinguishing amongst members of this 

closely related group of whales in the field has dramatically impaired understanding of each 

member’s taxonomy, genetics, and distribution.  Cerchio et al. (2019) provide a comprehensive 

review of the distribution of this species.  

 

Most recently, Rosel and Wilcox (2014) identified a new, evolutionarily distinct lineage of 

Bryde’s-like whales in the Gulf of Mexico (GOMx) (Fig. 1).  The presence of Bryde’s whales in 
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the GOMx was first recognized in 1965 (Rice, 1965) based on a whale that stranded alive on 

April 2, 1965 in the panhandle of Florida and was later towed to sea.  Historically, these whales 

were assumed to be a population of the broadly distributed B. edeni species.  Analysis of 

mitochondrial DNA (mtDNA) control region sequences of whales sampled in the northeastern 

GOMx revealed that this population is evolutionarily distinct from all other whales within the 

Bryde’s whale complex and all other known balaenopterid species (Rosel & Wilcox, 2014).  

Phylogenetic analyses placed these GOMx whales on a strongly supported lineage separated 

from B. e. edeni and B. e. brydei sampled in the Atlantic, Pacific, and Indian Oceans (Rosel & 

Wilcox, 2014).  Within the first 375 base pairs of the mtDNA control region, the whales from the 

GOMx exhibited 25 fixed differences differentiating them from B. e. edeni and B. e. brydei 

(Rosel & Wilcox, 2014).  This number of fixed differences is two to three times greater than that 

observed between recognized right whale species (Eubalaena spp.) and is of the same magnitude 

as the number of fixed differences found between fin (B. physalus) and blue (B. musculus) 

whales over the same gene region (Rosel et al., 2017).  For further comparison, Archer et al. 

(2013) found only two fixed differences between the fin whale subspecies in the North Atlantic 

and North Pacific.  

 

Rosel and Wilcox (2014) recommended that, based on the significant number of diagnostic 

differences and the finding of reciprocal monophyly, the whales in the GOMx should be given 

taxonomic status equivalent to the currently recognized subspecies, but they did not provide a 

species description.  This omission was due largely to the lack of an intact specimen to represent 

the holotype for the new taxon.  In addition, criteria for recognizing species and subspecies of 

cetaceans based on mtDNA sequence data were also lacking at the time. 
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In January 2019, an adult male Bryde’s-like whale stranded and died in the Everglades on the 

southwestern coast of Florida in the GOMx (field number FMMSN1908).  The entire specimen 

was collected and the intact skull and skeleton were deposited into the Smithsonian National 

Museum of Natural History collection (USNM 594665).  In addition, Taylor et al. (2017a) 

described new guidelines and thresholds for delimiting cetacean subspecies and species using 

mtDNA control region sequence data.  Here we re-examine the genetic distinctiveness of the 

Bryde’s-like whales in the GOMx, adding data from new samples collected since the initial 

publication of Rosel and Wilcox (2014), new DNA sequence data available from recent 

publications on Bryde’s whales worldwide, and in light of the guidelines and thresholds provided 

in Taylor et al. (2017a).  We also provide a description of the morphological characteristics of 

the new specimen.  The joint genetic and morphological data provide strong support for a new 

species of Balaenoptera. 
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2 | METHODS 

2.1 | Genetic data 

Rosel and Wilcox (2014) sequenced the complete mtDNA control region from 18 Bryde’s-like 

whales remotely biopsied in the northeastern Gulf of Mexico (GOMx), three whales that 

stranded in the GOMx and two that stranded on the U.S. east coast.  Here we add new DNA 

sequence data from 18 new skin samples collected between 2012 and 2019: 14 biopsy samples 

collected in the northeastern GOMx, the first biopsy sample ever collected in the western GOMx 

off Texas, and skin collected from two whales that stranded in Louisiana and a whale that 
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stranded in Flamingo, Florida Bay, Everglades National Park.  DNA was extracted using a 

standard proteinase K digestion followed by organic extraction (Rosel & Block, 1996) or a 

Qiagen DNeasy Blood and Tissue Kit following the manufacturer’s instructions.  DNA quality 

and quantity were assessed through gel electrophoresis and fluorometry, respectively.  The 

complete mtDNA control region was amplified and sequenced in two overlapping fragments and 

the sex of each biopsy was genetically determined as described in Rosel and Wilcox (2014).  

Control region PCR products were purified via low melting point agarose gel extraction followed 

by agarose digestion or purified enzymatically using Exonuclease I and FastAP Thermosensitive 

Alkaline Phosphatase (Thermo Scientific).  All PCR products were sequenced in both directions 

using the Applied Biosystems BigDye Terminator v1.1 cycle sequencing kit and run on an ABI 

3130 or ABI 3500 Genetic Analyzer or sequenced commercially using a BigDye Terminator 

v3.1 cycle sequencing kit (Eurofins MWG Operon) on an ABI 3730xl Genetic Analyzer.  

Forward and reverse reads were independently edited using Sequencher v5.4.6 (GeneCodes) or 

Geneious Prime 2020.0.5 (https://www.geneious.com) and a final consensus sequence for each 

sample was assembled. 

 

In an effort to locate a specimen that could serve as a holotype, we found a specimen  at the 

Louisiana State University Museum of Natural History (LSUMZ 17027) that had been collected 

in 1954 and identified as a possible Bryde’s whale (Lowery, 1974).  In order to verify the 

species, we extracted and sequenced DNA from the specimen.  A section of one occipital 

condyle was cleaned with 5% bleach solution and rinsed with distilled water, and surface bone 

removed by drilling with a sterile 3 mm drill bit.  The drill bit was exchanged for a new sterile 

bit and bone powder then collected from within the condyle bone.  DNA extraction was 
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performed in an ancient DNA only laboratory where all surfaces and laboratory equipment were 

cleaned with 10% bleach prior to performing the extraction.  DNA was extracted from 50 mg of 

bone powder using the Qiagen QIAamp DNA Investigator Kit after demineralization of the 

powder in 950 µl of 0.5 M EDTA (pH 8.0) at room temperature for 18 hr.  Extraction was 

performed according to the manufacturer’s protocol for isolation of DNA from bone with the 

following adjustments: Buffer ATL was decreased from 360 µl to 330 µl, Buffer AL with carrier 

RNA was increased from 300 µl to 700 µl, and the ethanol added prior to binding to the QIAamp 

MinElute column was increased from 150 µl to 350 µl.  A negative DNA extraction control was 

simultaneously run using 950 µl of 0.5 M EDTA (pH 8.0). 

 

For this bone sample, the 5’ end of the mtDNA control region was amplified and sequenced 

using five overlapping fragments ranging from 132 to 160 base pair (bp) in length.  The 

following sets of primer pairs were used to obtain control region sequence: L15874 (Vollmer et 

al., 2011) and Bede143R (5’-ATTAATTAAGTTATAGGAAGGT-3’) annealing temperature Ta 

= 50°C; Bede121F (5’-CTTGTCTTATCACATATTATT-3’) and Bede229R (5’-

CTTCAACTGCTCGTGGT-3’) Ta = 50°C; Bede218F (5’-TGCTATGTATAACTGTGCATTC-

3’) and Bede310R (5’-GACTGGGGAATGCATAACAG-3’) Ta = 45°C; BedeShort145F (5’-

ACCACGAGCAGTTGAAGTCC-3’) and BedeShort145R (5’-

TCGTGATCTAATGGAGCGGC-3’) Ta = 55°C; BedeShort89F (5’-

TGCTGTTATGCATTCCCCAGT-3’) and H16265 (Rosel et al., 1999) Ta = 50°C.  Each PCR 

was performed in a 50 µl reaction with 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 1.5 mM MgCl2, 

150 µM dNTPs, 2.5 U Taq DNA Polymerase (Invitrogen), 0.12 mg/ml BSA, 0.3 µM of each 

primer and 4 – 5 µl of DNA.  The PCR profile included an initial denaturation step of 95°C for 
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30 s followed by 45 cycles of 95°C for 30 s, Ta as listed above for 30 s, and 72°C for 30 s with a 

final extension at 72°C for 7 min.  PCR products were purified using Exonuclease I and FastAP 

Thermosensitive Alkaline Phosphatase (Thermo Scientific) and sequenced in both directions 

using the Applied Biosystems BigDye Terminator v1.1 cycle sequencing kit on an ABI 3130 

Genetic Analyzer.  Forward and reverse reads were independently edited using Geneious Prime 

2020.0.5 and consensus sequences for each fragment were created then assembled to create one 

continuous sequence of the 5’ end of the control region.  The final sequence was compared to the 

control region haplotypes of baleen whales recovered in the GOMx and western North Atlantic. 

 

The Bayesian phylogenetic analysis presented in Rosel and Wilcox (2014) was repeated with the 

addition of the new sequences described above and augmented with new sequences from the 

other Bryde’s whale taxa published since 2014 and available in GenBank.  The additional 

published sequences expanded the geographic range of the original phylogenetic analysis to 

include localities of Bryde’s whales, B. e. brydei, in the southern Caribbean (Luksenburg et al., 

2015), the East China Sea (Kim et al., 2018), the California coast of the eastern North Pacific1, 

off the coast of Chile in the eastern South Pacific (Pastene et al., 2015) and the coast of Brazil in 

the western South Atlantic (Pastene et al., 2015).  The geographic range of Eden’s whale, B. e. 

edeni, was increased by including new sequences from stranded whales in Bali, Indonesia in the 

eastern Indian Ocean (Yusmalinda et al., 2017) and the South China Sea (Li et al., 2019).  

Because the published sequences available in GenBank are of varying lengths, we performed the 

phylogenetic analysis on three different control region alignments: a 305 bp alignment that 
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allowed us to include the broadest geographic coverage of the Bryde’s whale complex contained 

73 haplotypes, a 375 bp alignment containing 22 haplotypes and finally a 721 bp alignment 

containing 11 haplotypes.  The latter alignment still allowed for coverage of all members of the 

Bryde’s whale complex and geographic coverage from the North Atlantic (including the GOMx 

and Caribbean Sea), South Atlantic, North Pacific (including the East and South China Seas), 

and the South Pacific.  The alignments also included haplotypes from B. omurai and from other 

balaenopterid whales, while Eubalaena glacialis served as the outgroup (Table S1).  All 

sequences were aligned using MUSCLE v3.8.425 and default parameters in Geneious Prime 

2020.0.5.   

 

Phylogenetic analyses were performed on each alignment using MrBayes v3.2.6 (Huelsenbeck & 

Ronquist, 2001).  First, jModeltest v2.1.6 (Posada, 2008) and the Bayesian information criterion 

(BIC) were used to determine the best model given the control region alignments; TPMuf+G for 

the 305 and 375 bp alignments and TPM3uf+I+G for the 721 bp alignment.  As a result, the 

more parameterized general time reversible (GTR) model with appropriate corrections (gamma 

and/or invariable sites) was used.  For each alignment, MrBayes was run in Geneious Prime 

2020.0.5.  Bayesian searches used 4 chains, 2 runs, and 5,000,000 generations using default 

priors in MrBayes.  Burn-in was set to 25%.  Convergence of the runs was determined by 

examining the average standard deviation of split frequencies and using Tracer v1.5 (Rambaut & 

Drummond, 2007).  

 

A characteristic attributes (CAs) diagnosis (Davis & Nixon, 1992; Lowenstein et al., 2009; 

Sarkar et al., 2002) was performed using the control region sequences of B. e. edeni, B. e. brydei, 
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B. omurai, and the haplotypes from the GOMx whales for the 305 bp control region alignment 

using all sequences available in GenBank.  While it is the shortest alignment, the 305 bp region 

allows us to include the greatest number of haplotypes for all taxa involved, thereby improving 

the likelihood that identified diagnostic sites are reflect true interspecific differences and not 

simply intraspecific variability.  

 

Subsequent to the identification of this unique lineage of whales in the GOMx in 2014, standards 

and guidelines for delimiting cetacean species and subspecies based on mtDNA control region 

sequences were established by Taylor et al. (2017a).  Rosel et al. (2017) surveyed levels of 

genetic divergence in the mtDNA control region between accepted pairs of species, subspecies, 

and populations of cetaceans, and explored the efficacy of different metrics of genetic divergence 

for correctly identifying these different taxonomic levels.  They found that the genetic measure 

of net nucleotide divergence or dA (Nei, 1987) performed well at distinguishing species from 

subspecies and populations.  This metric provides a measure of number of net nucleotide 

substitutions or net divergence between two groups, accounting for the level of within group 

variability.  Taylor et al. (2017a) built on these results, recommending quantitative standards for 

delimiting new species and subspecies based on dA coupled with a measure of diagnosability 

(defined as “a measure of the ability to correctly determine the taxon of a specimen of unknown 

origin based on a set of distinguishing characteristics” (Archer et al., 2017)).  If dA > 0.02 

between two groups of cetaceans, those groups exceed the threshold of net nucleotide divergence 

consistent with species level differences and could warrant species status when also coupled with 

a diagnosability of at or near 100%.  In cases where 0.004 < dA < 0.02 between two taxonomic 

248 

249 

250 

251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

261 

262 

263 

264 

265 

266 

267 

268 

269 



 13 

groups, those groups exhibit levels of genetic divergence consistent with subspecies.  To place 

the degree of divergence of the Bryde’s-like whales from the GOMx into this context, we 

estimated net nucleotide divergence, dA (Nei, 1987), for both Bryde’s whale subspecies, 

Omura’s whale and sei whale, B. borealis, sequences of the 375 bp alignment using MEGA X: 

Molecular Evolutionary Genetics Analysis across computing platforms (Kumar et al., 2018; 

Stecher et al., 2020).  For one haplotype, information on the number of individuals with the 

haplotype was not provided in the publication and was therefore assigned as a single individual.  

Fixed differences were calculated using DNAsp v6.12.03 and fixed indels determined by 

viewing the alignments in Geneious Prime 2020.0.5. 

 

All of the new samples except for the bone sample (LSUMZ 17027) were genotyped at the 17 

microsatellite loci identified as polymorphic in Rosel and Wilcox (2014) using a Qiagen Type-it 

Microsatellite PCR kit and the manufacturer’s protocols.  The loci used were: GATA028, 

GATA053, GATA098, GATA417, GGAA520 (Palsbøll et al., 1997), AC137, CA234, GT023, 

GT122, GT307, GT541 (Bérubé et al., 2005), EV104 (Valsecchi & Amos), Ppho130, Ppho137 

(Rosel et al., 1999), SW13 (Richard et al., 1996), GM199/200, GM417/418 (Amos et al., 1993).  

Reverse primers for all loci except GATA028, GATA053, GT023 and Ppho137 were pigtailed 

following Brownstein et al. (1996).  Multiplexing allowed all 17 loci to be genotyped in three 

PCR reactions (Table S2).  All PCR reactions included positive and negative no-DNA controls.  

Resultant PCR products, including all controls, were genotyped on an ABI 3130 or an ABI 3500 

Genetic Analyzer using Genescan 500 LIZ or Genescan 600 LIZ v2.0 dye size standard (Applied 

Biosystems), respectively.  The raw data were scored using GeneMapper v6 (Life 

Technologies/Applied Biosystems).  Observed and expected heterozygosities and the number of 
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alleles per locus were calculated using Arlequin v3.5 (Excoffier & Lischer).  In order to identify 

whether multiple biopsies were collected from the same animals, we used Microsatellite Toolkit 

(Park, 2001) to search for individuals with identical multilocus genotypes and we estimated 

probability of identity P(ID) and the more conservative P(ID)sib (Waits et al., 2001) using 

GenAlEx v6.5 (Peakall & Smouse, 2006).  Samples identified as having identical genotypes 

were also checked to see that they had the same sex and the same control region sequence. 

 

2.2 | Morphological data 

On 29 January 2019, a 1,126 cm adult male Bryde’s-like whale (FMMSN1908) stranded in 

Flamingo, Florida Bay, Everglades National Park, on the southwestern coast of the Florida 

Peninsula in the GOMx.  The Florida Fish and Wildlife Conservation Commission (FWC)-

Southwest Field Laboratory coordinated with NOAA National Marine Fisheries Service, 

Southeast Fisheries Science Center and volunteers from multiple agencies to salvage the carcass 

for full necropsy and preservation.  A suite of external observations was taken by the stranding 

responders and the carcass was then buried in Fort De Soto Park, Florida.  In October 2019, after 

being moved from Florida to North Carolina for further cleaning, the entire skeleton was 

exhumed, cleaned further and deposited in the U.S. Museum of Natural History at the 

Smithsonian Institution (USNM 594665).  We took ten measurements of the skull (Table 1) to 

the closest millimeter using a calipers and photographed the skull.  In addition, we examined and 

compared the characteristics of the vertex of the skull identified by Wada et al. (2003) as 

important for distinguishing among the different Bryde’s whale taxa, including Omura’s whale.  

These include the shape and extent of the ascending process of the posterior end of the maxilla, 

the extent to which the frontals are exposed, the extension of the premaxilla and whether it 
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reaches the frontal, and whether the alisphenoid and squamosal bones are in contact.  We also 

directly compared these features between this whale (USNM 594665) and USNM 572922, a 

subadult male that stranded on the North Carolina coast in 2003 that has been genetically 

confirmed to belong to the lineage that identifies the Bryde’s-like whales in the GOMx (Rosel & 

Wilcox, 2014).  

 

2.3 | Distributional data 

The National Marine Fisheries Service (NMFS), Southeast Fisheries Science Center (SEFSC) 

has conducted marine mammal vessel and aerial surveys in the northern GOMx, covering 

nearshore, continental shelf and slope, and oceanic waters out to the U.S. EEZ since the late 

1980s.  We reviewed and compiled all “Bryde’s whale”, “Balaenoptera sp.” and “Bryde’s/sei 

whale” sightings from these GOMx surveys spanning 1989‒2019.  We similarly compiled and 

reviewed all NMFS marine mammal vessel and aerial surveys in the U.S. EEZ of the Atlantic 

coast between 1992 and 2019.  Depths at each visual sighting location were extracted using 

ArcGIS and the ETOPO2 2-arc-minute gridded global relief dataset.  

 

We also reviewed 13 sightings records provided by the Bureau of Ocean Energy Management 

(BOEM) made by protected species observers (PSO) on seismic vessels in the GOMx from 

2010‒2014 as part of the required mitigation measures.  These observers record time, location, 

distance to vessel, water depth, species, a visual description of the whale and additional sighting 

details for each sighting.  As other whales are present in the GOMx, including sperm whales and 

beaked whales (Family Ziphiidae), which, at a distance, could potentially be confused with a 
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baleen whale, we evaluated each sighting description to determine the likelihood the sighting 

was of a Bryde’s-like whale.   

 

Finally, we reviewed stranding data from the U.S. GOMx coast and the U.S. Atlantic seaboard 

for those strandings listed as “Bryde’s whales” through query of the NOAA National Marine 

Mammal Health and Stranding Response Database and the Division of Mammals Collections at 

the Smithsonian National Museum of Natural History (USNM), including examination of all 

written records in the USNM archive.  While stranding data can potentially provide some 

information on cetacean distribution, it is important to recognize that stranding location may not 

always represent habitat or area of origin due to currents and winds moving carcasses away from 

normal distribution.  We also reviewed the published literature for both regions and also 

broadened the search to cover the entire Atlantic Ocean to further evaluate the distribution of 

Bryde’s whale taxa in the Atlantic Basin.   
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3 | Results 

3.1 | Genetic data 

The full mtDNA control region (936 bp) was successfully sequenced for 15 new remote skin 

biopsy samples and three strandings.  No new haplotypes were found; all new animals exhibited 

the most common haplotype (Bede001, GenBank accession KJ586818).  The 5’ end of the 

mtDNA control region (381 bp) that was sequenced for bone sample LSUMZ 17027 also 

matched the Bede001 haplotype.  In combination with those samples presented in Rosel and 
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Wilcox (2014), a total of 42 whale tissue samples (35 biopsies, 7 strandings) have been analyzed 

from the GOMx and two strandings from the Atlantic.   

 

All tissue samples were successfully genotyped at the 17 microsatellite loci.  Only a single new 

allele was found at locus GATA098, despite increasing the overall genotyped sample size by 59 

%.  Probabilities of identity (PID = 1.50 x 10-4; P -2
ID(sib) = 1.36 x 10 ) were relatively high due to 

the low heterozygosity exhibited by all the loci (Table S2).  Microsatellite Toolkit identified 8 

duplicate samples across the pooled old and new sample set, with several animals biopsied eight 

to nine years apart.  After removing duplicate samples, and including the LSU specimen, the 

total number of individual whales sampled in the northern GOMx and the two strandings on the 

east coast between 1954 and 2019 is 36.  The sex ratio across these unique individuals (biopsies 

and strandings) is 19F:15M; the sex of two stranded animals could not be determined.   

 

The Bayesian analyses based on the mtDNA control region alignments revealed the same pattern 

found previously (Rosel & Wilcox, 2014).  B. e. edeni, B. e brydei, and the Bryde’s-like whales 

in the GOMx are each reciprocally monophyletic with posterior probabilities of 0.99 to 1.0 (Fig. 

2, Figures S1, S2).  The characteristic attributes diagnosis on the 305 bp control region alignment 

identified a total of 30 diagnostic sites that distinguish among B. e. brydei, B. e. edeni, B. omurai, 

and the Bryde’s-like whales from the GOMx (Table 2).  These include 24 of the 25 diagnostic 

sites reported in Rosel and Wilcox (2014) and five additional sites previously described in 

Cypriano-Souza et al. (2017).  Nucleotide position 15682 was counted in error in Rosel and 

Wilcox (2014) as a diagnostic position.  A novel diagnostic site for the Bryde’s-like whales from 
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the GOMx not previously noted (position 15564) was identified due to removal of one B. e. 

brydei haplotype (GenBank accession EF068039) due to sequencing error reported by the 

authors2.  The total number of diagnostic positions for each of the four taxa was: B. e. edeni (n = 

2), B. e. brydei (n = 3), B. omurai (n = 16), and Bryde’s-like whales from the GOMx (n = 10).  

Nei’s net nucleotide divergence, dA, between the whales from the GOMx and the two B. edeni 

subspecies based on the 375 bp alignment ranged from 0.103 to 0.128 (Table 3), significantly 

greater than the minimum value of 0.02 for species level distinction identified by Taylor et al. 

(2017a).  The number of fixed differences likewise remains high between the whales from the 

GOMx and those elsewhere (Table 3) and provide 100% diagnosability based on this gene 

region. 

 

3.2 | Morphological data 

The whale that stranded in January 2019 was an adult male (Fig. 3).  Total length was 1,126 cm.  

The whale was a uniform dark gray on the dorsal side with a large falcate dorsal fin; the flippers 

were uniformly dark.  The ventral side was lighter in coloration, particularly on the ventral side 

of the peduncle.  The ventral side of the tail was lighter in color, particularly towards the middle 

and at the peduncle.  Three ventral pleats extended past the umbilicus at the midline.  The pleats 

were counted from the right lateral aspect to the mid-line; in line with the flipper insertion, 27 

pleats were counted, given a total count of 54 pleats.  As is typical for all Bryde’s-like whales, 

three ridges were present on the rostrum. 

382 

383 

384 

385 

386 

387 

388 

389 

390 

391 

392 

393 

394 

395 

396 

397 

398 

399 

400 

401 
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Wada et al. (2003), Yamada et al. (2006), and Yamada et al. (2008) utilized several diagnostic 

characteristics of the skull to distinguish between B. e. edeni, B. e. brydei, and B. omurai.  

Omura’s whales exhibit the most differences, including two foramina on the parieto-squamosal 

suture.  B. e. edeni is unique in the shape of the ascending process of the maxilla (slender and 

round) and in the broadly exposed frontal bones and the ‘pedestal’ they form for the ascending 

process of the maxilla (Wada et al., 2003).  We utilized the diagnostic characters indicated by 

Wada et al. (2003), Yamada et al. (2006); Yamada et al. (2008) to examine the skull of the 2019 

stranded whale (USNM 594665).   The foramina seen in Omura’s whale were not present in the 

2019 stranded whale (USNM 594665).  The Bryde’s-like whales from the GOMx are further 

distinguished from B. omurai by the posterior end of the premaxillae, which reach the frontals in 

the GOMx whales but not in B. omurai.  In the GOMx whales, the frontals are only narrowly 

exposed, forming a thin, narrow belt, clearly distinguishing them from B. e. edeni.  In these 

characteristics of the vertex of the skull, the GOMx whales are most similar to B. e. brydei.  

However, we identified several characteristics in the vertex consistent in both the 2019 specimen 

(USNM 594665) and the immature whale specimen collected in North Carolina (USNM 572922) 

that are unique to the Bryde’s-like whales from the GOMx and can be used to separate them 

from the other Bryde’s whale subspecies and from B. omurai.  We observed that the anterior 

portion of the frontal bones wraps around the posterior end of the nasals and protrudes on their 

medial side to separate the posterior end of the nasals.  In addition, the posterior end of the nasals 

curves laterally and has relatively smooth margins, while in B. e. brydei the posterior end of the 

nasals remains straight and has somewhat crenulated margins.  
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3.3 | Distributional data 

3.3.1 Gulf of Mexico 

Compilation of 181 visual sightings from NMFS marine mammal aerial and vessel surveys 

between 1989 and 2019 indicates these whales currently have a restricted distribution along the 

continental shelf break near the De Soto Canyon area of the northeastern GOMx (Fig. 4).  The 

water depths of visual sightings ranged from 117 m to 408 m with all but two in the range of 

151‒352 m.  In addition, a whale tagged in this area in October 2010 was satellite-tracked for a 

month, during which time the animal remained in waters between 100 and 400 m depth within 

the northeastern GOMx (Soldevilla et al., 2017).  

 

During this survey period (1989‒2019), two of the 181 sightings were of a large baleen whale 

(recorded as Balaenoptera sp. or Bryde’s/sei whale) in the western GOMx west of the 

Mississippi River delta in waters less than 300 m deep, but neither could be identified to species.  

However, in August 2017, the first confirmed sighting of a live Bryde’s-like whale in the 

western GOMx was made during a NMFS vessel survey (National Marine Fisheries Service, 

2018).  This whale was seen off the Texas coast in 225 m water depth.  Analysis of the mtDNA 

control region from a skin biopsy sample collected from the whale confirmed that it belongs to 

the lineage unique to Bryde’s-like whales from the GOMx.  Finally, acoustic moorings placed in 

the western GOMx south of Louisiana have recorded some unique vocalizations thought to 

belong to Bryde’s-like whales from the GOMx3.  Both the recordings and the sighting in the 
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3 M. Soldevilla, pers comm. NMFS Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, Florida, 
33149. July 2019. 
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western GOMx were in water depths similar to the habitat used by the whales in the northeastern 

GOMx. 

 

Examination of 13 sightings provided by BOEM from marine mammal observers on seismic 

vessels provided only minimal insight.  No sightings were close enough for observers to record 

whether the diagnostic lateral ridges on the dorsal surface of the head were visible and thus none 

could unequivocally be identified as a Bryde’s-like whale.  Five sightings were in water depths 

>1,000 m, which is inconsistent with the Bryde’s-like whales in the GOMx, and several of these 

observations described surfacing followed by multiple blows, a behavior more consistent with 

sperm whales recovering after a deep dive.  These five sightings were ruled out as likely baleen 

whale sightings.  Two sightings were within the known habitat in the northeastern GOMx, in 

waters of an appropriate depth suggesting they were likely Bryde’s-like whales.  Two sightings 

had useful photographs indicating a baleen whale with a distinctive falcate dorsal fin and were 

likely either a Bryde’s whale or a stray sei whale.  The four remaining sightings were in depths 

consistent with Bryde’s whales, and several of these had descriptions of behavior consistent with 

them as well, e.g., two or more vertical blows before diving.  These four sightings could not be 

ruled out based on the available information.  While significant uncertainty remains with respect 

to the identity of whales sighted by PSO observers, four of the sightings were made along the 

continental shelf break west of the Mississippi River Delta (Fig. 4).  

 

3.3.2 Atlantic Ocean 

There are no confirmed at-sea sightings of any type of Bryde’s whale along the U.S. eastern 

seaboard during NMFS marine mammal vessel and aerial surveys between 1992 and 2019, 

445 

446 

447 

448 

449 

450 

451 

452 

453 

454 

455 

456 

457 

458 

459 

460 

461 

462 

463 

464 

465 

466 

467 



 22 

despite considerable survey effort in the U.S. EEZ from Florida through Maine (~854,721 km of 

on-effort track line surveyed).  There were five ship-based and one aerial survey-based sightings 

recorded as “Bryde’s/sei whales” from the early 1990s (Fig. 4).  None of these sightings were 

close enough to identify rostral ridges and five were in waters greater than 1,000 m suggesting 

they were either the pelagic form of Bryde’s whale (B. e. brydei) or were sei whales.  The 

southernmost sighting of a Bryde’s/sei whale in the Atlantic was in approximately 1,100 m water 

depth over the Blake Plateau east of central Florida, again much deeper than typical of the 

GOMx whales.  Using 23 years of visual survey data from 1992-2014, Roberts et al. (2016) built 

habitat-based spatial density models for multiple cetacean species in U.S. waters of the western 

North Atlantic and GOMx.  For the U.S. east coast, the authors utilized data collected from a 

variety of vessel- and aerial-based line transect surveys covering 895,000 km of effort from 

southern Florida to the Bay of Fundy.  They predicted a mean monthly abundance of seven 

Bryde’s whales (C.V. = 0.58) along the entire eastern seaboard based on four Bryde’s/sei whale 

sightings recorded on these surveys (Roberts et al., 2016).   

 

Acoustic studies have also not recorded whale call types associated with any type of Bryde’s 

whale in the waters off Jacksonville, Florida, although fin, minke, B. acutorostrata, and sei 

whale vocalizations were detected (Frasier et al., 2016).  Further north off Cherry Point, NC and 

in Norfolk Canyon, acoustic monitoring has detected several baleen whale species, but to date no 

Bryde’s whales have been recorded (Debich et al., 2014; Rafter et al., 2018).  Overall, the 

evidence to date indicates Bryde’s whales are extremely rare in U.S. waters of the western North 

Atlantic. 
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Of great interest is whether the Bryde’s-like whales from the GOMx are distributed outside of 

the GOMx in the Caribbean.  In other areas of the western Atlantic, Bryde’s whales have been 

recorded off Brazil (de Moura & Siciliano, 2012; Gonçalves et al., 2016; Lodi et al., 2015; 

Maciel et al., 2018), Suriname (de Boer, 2015) and north to at least Venezuela (Romero et al., 

2001; Smultea et al., 2013), and into the southern Caribbean including waters of Bonaire (Debrot 

et al., 1998), Aruba (Luksenburg et al., 2015), and Curacao (Debrot, 1998; Debrot et al., 1998).  

Luksenburg et al. (2015) genetically identified the Aruba strandings as B. e. brydei and found 

they were genetically closest to the whales sampled off Madeira in the eastern Atlantic.  Whales 

stranded in Brazil have also been genetically confirmed as B. e. brydei (Pastene et al., 2015).  

Finally, there is a record of a live stranded Bryde’s whale (subspecies unknown) from St. 

Vincent and the Grenadines in 20094. 

 

There are no comprehensive Caribbean-wide cetacean diversity studies from which to draw, and 

no Caribbean strandings north of Aruba have been genetically tested.  However, based on 

existing sighting information it appears there is a hiatus of Bryde’s whales in the central 

Caribbean, with B. e. brydei present in waters south of the hiatus and any Bryde’s whale taxon 

generally rare north of it.  A ship-board survey for cetaceans in 2000 covered waters from Puerto 

Rico to Venezuela (excluding Antigua and Barbuda, Dominica, and St. Vincent and the 

Grenadines) and recorded five Bryde’s whale sightings, all in the southeastern Caribbean 

(Swartz & Burks, 2000), but which subspecies was seen is unknown.  Similarly, Yoshida et al. 

(2010) surveyed from St. Kitts and Nevis south to Grenada and observed six Bryde’s whales 

(subspecies unknown), all restricted to the southern survey area.  One sighting was made in 
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shallow waters northeast of Grenada while the remaining sightings were made in deep waters 

(2,000 m) of the Grenada and the Tobago basins.  Additional surveys in the northern Caribbean 

have not recorded any subspecies of Bryde’s whales (Roden & Mullin, 2000; Swartz et al., 

2002).  

 

Debrot et al. (2013) compiled cetacean records for the Dutch Windward Islands (Saba, St. 

Eustatius, St. Maarten, and the Saba Bank) and noted a surprising lack of records of any Bryde’s 

whales.  The authors suggested they may be absent from the northeastern Caribbean, a result in 

agreement with results from the shipboard surveys.   

 

In the eastern Atlantic Ocean, Bryde’s whales have been reported from the offshore islands of 

Cape Verde (Hazevoet & Wenzel, 2000), Madeira (Alves et al., 2010), and the Azores (Steiner et 

al., 2008).  They also inhabit nearshore waters and offshore waters of the southwestern African 

coast (Best, 2001; Weir, 2010).  To date, the whales in these regions have been genetically 

ascribed to Bryde's whales, B. e. brydei, (Luksenburg et al., 2015; Penry et al., 2018; Rosel & 

Wilcox, 2014), with the exception of whales in the Azores and the Gulf of Guinea, which have 

not yet been genetically tested.  Thus, to date, these studies have supported the conclusion by 

Rice (1998) that Eden’s whale (B. e. edeni) is not present in the Atlantic.   

 

3.3.3 Stranding data 

After compiling the available data from stranding reports from the GOMx and the U.S. Atlantic 

coast, we found 33 records that could potentially be Bryde’s -like whales, 24 in the GOMx and 9 

in the Atlantic.  We removed two of the GOMx records we identified as either duplicate records 
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or misidentifications (or both) (Table S3), leaving 22 stranding records in the GOMx listed as 

“Bryde’s whale,” dating as far back as 1954; of these, 11 were found in Louisiana at or east of 

the Mississippi River Delta, nine were collected along the GOMx coast of Florida, including the 

Everglades, and two were collected in western Louisiana (Fig. 4).  Two stranded animals were 

recorded in the 1970s, seven in the 1980s, and four in 1990s, while three were recorded in the 

2000s and four in the 2010s.  The remaining two were recorded in 1954 and 1965.  We 

characterized the 22 strandings further (Table 4) as 1) “verified GOMx Bryde’s-like whale” 

when diagnostic DNA sequence data were retrieved from the specimen, 2) “Bryde’s-like whale” 

when stranding records included photos or written records indicating rostral ridges were present, 

but no genetic data were available, or 3) “unconfirmed Bryde’s-like whale” when, although the 

stranding was recorded as a Bryde’s whale, we could not find records (photos, written notes) 

indicating rostral ridges were present and no tissues were available.  Whales in category 2 are 

most likely GOMx Bryde’s-like whales as we have found no genetic evidence for any other 

Bryde’s-like whale subspecies in the GOMx, and there is little reason to doubt the records from 

category 3 as being GOMx Bryde’s-like whales, but we chose to be conservative in our 

verification process.  Following this categorization, we had tissue from seven and were able to 

confirm the mtDNA control region haplotype diagnostic of the Bryde’s-like whales from the 

GOMx in all seven, including the 1954 skull collected by Lowery (1954).  Six Gulf strandings 

had photos that clearly showed rostral ridges indicative of all members of the Bryde’s whale 

complex, but no tissue was available for genetic analysis.  The remaining nine could not be 

verified further than “baleen whale” following our conservative methods.  Seven of those 

stranded in the northern GOMx in Louisiana, along the panhandle of Florida, or near Tampa, 

Florida where verified GOMx whale strandings are most common, suggesting it is likely these 
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were also GOMx Bryde’s-like whales.  Interpretations for the other two, one stranding in Big 

Pine Key, Florida and the other in western Louisiana, are more difficult.  

 

In the Atlantic, six of the nine records of “Bryde’s whale” strandings included sufficient 

information to verify the animals were from the Bryde’s whale complex, either because the 

records stated that photos were available to confirm rostral ridges or the skull or tissue was 

collected.  Two of these six were confirmed genetically to match the Bryde’s-like whales from 

the GOMx, having the diagnostic mtDNA control region haplotype.  Three other records listed as 

Bryde’s whale could not be confirmed either because decomposition of the carcass precluded 

observation of characteristic features of Bryde’s whales or because the stranded animal was not 

documented well enough.  Interestingly, all nine whales were relatively small; all but one was 

less than 1,000 cm in length (Table 4).  Mead (1977) has suggested that the Bryde’s whale 

strandings along the U.S. Atlantic were likely extralimital strays from the Gulf of Mexico. 

 

In addition to the records for the southern Caribbean mentioned previously, there are five 

stranding records for Bryde’s whales in the northern Caribbean but the subspecies of each is 

unknown.  These include a stranded Bryde’s whale in Puerto Rico reported in Mignucci-

Giannoni et al. (1999) and a record in the Division of Mammals Collections at the Smithsonian 

National Museum of Natural History of a stranding in the Bahamas on March 4, 2000 (STR 

12575) listed as “B. edeni?”.  There is a second record of a Bryde’s whale stranding in the 

Bahamas in 2008 (Currie et al., 2019), and both the USNM database and the Southeast U.S. 

stranding database reference a May 1991 stranding of a Bryde’s whale in St. Croix, Lesser 

Antilles (MME7994, SE6423).  Additional information to verify these records was not found.  
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Whitt et al. (2011) reviewed records of marine mammals in Cuban waters and indicated one 

confirmed record of a Bryde’s whale stranding from the southeastern coast of Cuba, but the 

subspecies is unknown.  This animal was initially identified as a juvenile sei whale by Varona 

(1965).  Mead (1977) re-classified it as a Bryde’s whale as the bristles of the baleen were 

considered too coarse to be from a sei whale, although reports indicated no accessory ridges on 

the rostrum.  Varona (1973), as reported in Whitt et al. (2011), suggested that sei whales were 

historically found off southeastern Cuba in the 1800s but it is possible these were 

misidentifications of Bryde’s whales (Whitt et al., 2011).   
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4 | DISCUSSION 

Rosel and Wilcox (2014) revealed, based on a genetic analysis of mtDNA control region 

sequences compiled from a worldwide distribution, that the Bryde’s-like whales found in the 

northern GOMx were evolutionarily distinct from all other lineages and indicated that they may 

deserve taxonomic status on par with the other members of the Bryde’s whale complex, B. e. 

edeni and B. e. brydei.  Augmenting this study with additional samples from the GOMx for 

genetic analysis and with the first morphological analysis an intact specimen from the GOMx 

further supports that these whales are taxonomically unique.  The new morphological data 

provide a second, independent line of evidence as recommended for delimiting cetacean species 

(Reeves et al., 2004).   

 

Several characteristics of the bones of the vertex of the skull distinguish the whales in the GOMx 

from all members of the Bryde’s whale complex.  They are clearly distinguished from Omura’s 
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whales by the extent of the premaxilla, which do reach the frontal bones in the whales from the 

GOMx but not in Omura’s whales.  Bryde’s-like whales from the GOMx are easily distinguished 

from Eden’s whales, B. e. edeni, by fact that the frontals are only narrowly exposed between the 

ascending process of the maxilla and the supraoccipital.  Finally, like B. e. edeni and B. e. brydei, 

the whales from the GOMx exhibit their own diagnostic shape of the nasal bones, and exhibit the 

unique feature of frontal bones wrapping around the smooth, curved posterior tips of the nasal 

bones and extending down in between the nasal bones, forcing a bigger gap between them than 

seen in the other subspecies.  These features allow separation of Bryde’s-like whales in the 

GOMx from Omura’s whales and the two recognized subspecies of Bryde’s whales. 

 

Analysis of 18 new soft tissue samples and 1 bone sample, almost doubling the sample size used 

in the original analysis (Rosel & Wilcox, 2014), did not change the outcomes of the mtDNA 

genetic analysis or conclusion that these whales are genetically divergent from other whales in 

the genus Balaenoptera.  Following the guidelines and standards for delimiting cetacean species 

and subspecies proposed by Taylor et al. (2017a), we find that the whales in the GOMx 

substantially exceed the recommended threshold for species for net nucleotide divergence (i.e., 

dA > 0.02).  When compared to the two recognized subspecies of Bryde’s-like whales and to the 

sei whale, values of dA for Bryde’s-like whales in the GOMx ranged from 0.10 to 0.13 (10 % - 

13 %) based on the first 375 bp of the mtDNA control region (Table 3).  This level is equivalent 

to that seen between the two currently recognized subspecies of Bryde’s whales (dA = 0.10).  

Thus, the whales from the GOMx are as divergent as the currently recognized subspecies are 

from each other (and all three exceed the threshold for species).  Taylor et al. (2017a) also 
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recommended that, at the species level, two taxa must be diagnosably distinct, and specifically 

that there is a near 100% probability of identifying an individual as belonging to the taxon.  

Fixed nucleotide differences in the control region, such as exist between Bryde’s-like whales 

from the GOMx and all other whales, serve to render them diagnosably distinct (100%), further 

meeting the quantitative criteria of being a separate species.  Given the larger number of fixed 

differences in the control region (Table 3), additional mtDNA data, such as whole mitogenomes, 

is not likely to alter the diagnosability of these whales.  In fact, Rosel and Wilcox (2014) 

identified multiple fixed differences in the cytochrome b and cytochrome oxidase I genes as 

well.  For further perspective, Penry et al. (2018) compared mtDNA control region sequences 

from inshore and offshore ecotypes of Bryde’s whale, B. e. brydei, off South Africa.  Based on a 

1.8 – 2.1% divergence and ten fixed differences, they concluded the two ecotypes off South 

Africa represent different subspecies.  The values for both metrics are an order of magnitude 

lower than those observed between the Bryde’s whales-like in the GOMx and the two recognized 

subspecies, further illustrating the significant evolutionary divergence exhibited by the whales in 

the GOMx. 

 

Phylogenetic analysis of the control region sequences continues to identify Bryde’s-like whales 

from the GOMx as a unique lineage separated from the two Bryde’s whale subspecies and from 

the sei whale and Omura’s whale with strong support (Fig. 2).  What the control region sequence 

data do not clearly answer is to which of the two subspecies these whales are most closely 

related.  Posterior probabilities on the nodes joining the clades representing each taxon are very 

low, and in fact the phylogenetic tree based on the 375 bp alignment creates a trichotomy of the 

sei whale, B. e. brydei, and a joint B. e. edeni + GOMx whale clade, which itself has a posterior 
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probability of only 0.61, well below the threshold (0.90-0.95) recognized for robust conclusions 

concerning phylogenetic relationships (Huelsenbeck & Rannala, 2004).  This result is not 

uncommon for the control region, which performs well at identifying unique taxonomic groups 

and, for instance is useful for DNA barcoding of cetacean species (Viricel & Rosel, 2012), but 

has been shown to have limitations in identifying evolutionary relationships among recently 

diverged cetacean taxa (e.g., Perrin et al., 2013).  Further analyses utilizing a larger data set that 

includes nuclear DNA sequences will provide a more robust investigation of the evolutionary 

relationships among these taxa.  

 

In addition to genetic and morphological data, Bryde’s-like whales in the GOMx also have a 

unique acoustic signature that distinguishes them from all other baleen whales.  Rice et al. (2014) 

recorded acoustic calls using marine autonomous recording units (MARUs) placed in the known 

whale habitat in the northeastern GOMx.  Three types of sounds were recorded that were 

consistent with other baleen whale species, but none matched known sounds produced by other 

baleen whales, including the two Bryde’s whale subspecies, suggesting these whales in the 

GOMx exhibit a unique and diagnostic acoustic repertoire; however, because the recorders were 

autonomous, it was not possible to directly link the recorded sounds to visual sightings of the 

whales (Rice et al., 2014).  Širović et al. (2014) definitively identified a call-type directly 

associated with Bryde’s-like whales in the GOMx through visual observation paired with towed 

acoustic-array recordings.  More recently, long moans and downsweep pulse trains were 

validated to be from these whales in the GOMx using real-time visual and acoustic observations5.   
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A workshop on the taxonomy of cetaceans concluded that a single line of evidence (e.g., genetic 

data or morphological data) was sufficient to delimit cetacean subspecies while two independent 

lines of evidence were necessary for delimiting species (Reeves et al., 2004).  Bryde’s-like 

whales in the GOMx exhibit two strong lines of evidence that distinguish them from all other 

closely related species.  Examination of morphological features of the skull key to discriminating 

among taxa in the Bryde’s whale complex and Omura’s whale (Wada et al., 2003), revealed 

multiple diagnostic characters that distinguish the whales in the GOMx from both B. e. edeni and 

B. e. brydei, and from Omura’s whale.  Similarly, the degree of genetic divergence between the 

whales in the GOMx and B. e. edeni and B. e. brydei (dA > 0.10) significantly exceeds the net 

divergence metric identified by Taylor et al. (2017a) for species delimitation based on mtDNA 

control region sequences (dA > 0.02), and multiple diagnostic sites in the mitochondrial sequence 

further support divergence at the species level.  The apparent highly restricted range and 

isolation of these whales in the northern GOMx reinforces a severely limited opportunity for 

gene flow with any other populations of Bryde’s whales, and the morphological differences rule 

out recent or ongoing male-mediated gene flow.  The data presented here from multiple lines of 

evidence (genetics, morphology, distribution) indicate that the Bryde’s-like whales in the GOMx 

are a previously unnamed species.   

 

4.1 | Distribution 

The Bryde’s-like whales in the GOMx are the only year-round resident baleen whale species in 

the GOMx.  Sightings and strandings of all other baleen whale species in the GOMx are rare and 
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considered extralimital (Jefferson, 1995; Jefferson & Schiro, 1997).  Compiling the sighting, 

acoustic, genetic, and stranding data, it is clear that these whales are restricted in their 

distribution to the GOMx, and that the northeastern GOMx, particularly the De Soto Canyon area 

and water depths of 150‒410 m, are currently the primary habitat of these whales.  The nearest 

confirmed populations of other members of the Bryde’s whale complex are of B. e. brydei in the 

southern Caribbean south to Venezuela and Brazil, and in the eastern North Atlantic and the 

eastern south Atlantic off South Africa (Alves et al., 2010; Best, 2001; de Boer, 2015; de Moura 

& Siciliano, 2012; Debrot, 1998; Debrot et al., 1998; Gonçalves et al., 2016; Hazevoet et al., 

2010; Hazevoet & Wenzel, 2000; Luksenburg et al., 2015; Maciel et al., 2018; Pastene et al., 

2015; Penry et al., 2018) (Fig. 5).  To date there are no confirmed records of B. e. edeni from the 

Atlantic basin. 

 

LaBrecque et al. (2015) identified biologically important areas (BIAs) for cetacean species in the 

GOMx, including waters 100‒300 m deep in an area in the northeastern GOMx for the GOMx 

whale [See Fig. 3.1 in LaBrecque et al. (2015)].  We have revisited and updated this area using 

additional years of sighting data to better reflect the currently known distribution in the 

northeastern GOMx (Figs. 4, 5).  A convex hull polygon (IUCN, 2012) was drawn around all 

visual sightings recorded as “Bryde’s whale”, “Bryde’s/sei whale” or “balaenopterid whale” (the 

latter are cases where the characteristic rostral ridges of a Bryde’s whale were not noted), 

telemetry tag locations (n = 52) from a single Bryde’s-like whale tagged in 2010 (Soldevilla et 

al., 2017) in the northeastern GOMx, and Acousonde tag locations (n = 41) for one whale tagged 

in 2015 (Soldevilla et al., 2017); a total of 212 data points collected between 1989 and 2018.  

The convex hull polygon was trimmed at 410 m, determined based on the current deepest known 
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sighting of 408 m.  By its very nature, many of the sightings fall on the boundary of the convex 

hull polygon and therefore the polygon under-estimates the range of the species and was further 

buffered to account for uncertainty in the distribution.  A 10 km buffer was drawn around this 

polygon to capture the uncertainty in sighting position given the strip width of the vessel surveys.  

An additional 20 km buffer was then added to this "position uncertainty" to account for the likely 

movement of observed whales.  This results in a 30 km buffer around sighting locations.  The 

area should be updated periodically with new sighting data as they become available.   

 

As mentioned above, there was a confirmed sighting of a Bryde’s-like whale in the western 

GOMx in 2017 and there were two baleen whale sightings (only identified as “Bryde’s/sei 

whale”) during NMFS surveys in the western Gulf in the early 1990s.  These sightings raise 

important questions.  Is it possible that some whales move west from the current core habitat in 

the northeastern GOMx?  Alternatively, do these sightings constitute remnants of a once more 

broadly distributed population, as suggested by whaling data (Reeves et al., 2011) and if so, why 

are they now rare in the western GOMx?  Or do they come from another, as yet unidentified 

population in the southern GOMx?  Has this area in the western GOMx become a marginal or 

suboptimal habitat for these whales?  Further research in the western and southern GOMx will 

greatly aid our understanding of whether these whales utilize these habitats and if so, how often, 

and also how they are related to the whales that are found in the northeastern GOMx.   

 

4.2 | Life History 

Little is known about the life history of these whales in the GOMx.  Stranding and biopsy data 

indicate both sexes are present in the Gulf; the sex ratio determined for 32 individual whales 

716 

717 

718 

719 

720 

721 

722 

723 

724 

725 

726 

727 

728 

729 

730 

731 

732 

733 

734 

735 

736 

737 

738 



 34 

from the northern GOMx was 18 females and 14 males (not significantly different from a 50:50 

ratio, Chi-square with 1 degree of freedom, P = 0. 4795).  In addition, stranding data indicate the 

whales are likely breeding in the GOMx, as we identified records of several smaller animals in 

the stranding records, including a 470 cm calf that stranded alive in November of 2006, and a 

693 cm individual that stranded in November of 1988 and was brought into captivity for a short 

time (Edds et al., 1993).  In August 2016, two whales were sighted together in the northeastern 

GOMx core area during a NMFS SEFSC large-vessel survey.  One whale was approximately 

half the size of the larger whale and had physical characteristics suggestive of a calf.  In addition, 

a dead, lactating female whale was found in Tampa Bay in October of 2009.  This whale 

mortality likely resulted from a ship strike as the whale exhibited internal injuries consistent with 

blunt force trauma.   

 

Basic information on total length, standard external measurements, external color pattern, etc. 

suffers from inadequate sample sizes.  After re-examining records for strandings recorded as 

“Bryde’s whales” in the GOMx and western North Atlantic, and removing those we determined 

to be mis-identified or duplicate records, some external measurements were available in common 

across eight whales (Table S4).  Total length measurements for these whales ranged from 470 cm 

to 1,265 cm.  

 

Worldwide, members of the Bryde’s complex exhibit a variety of foraging strategies and prey 

preferences, often with observations of surface feeding.  Overall, pelagic schooling fishes in the 

order Clupeiformes (sardines, herring, menhaden, anchovies) are the most commonly recorded 

prey, along with similar schooling species such as members of the family Carangidae (Best, 
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2001; Konishi et al., 2009; Murase et al., 2007; Siciliano et al., 2004; Tershy, 1992; Watanabe et 

al., 2012).  Populations examined further offshore also target euphausiids (Best, 2001; Konishi et 

al., 2009), while the B. e. brydei population of the Hauraki Gulf in New Zealand appears to prey 

on copepods and krill along with ray-finned fishes and salps (Carroll et al., 2019).  However, diet 

is poorly characterized for the whales in the GOMx.  Surface feeding has never been observed.  

Recently, Soldevilla et al. (2017) placed an Acousonde suction-cup tag on a Bryde’s-like whale 

in the northeastern GOMx.  The tag remained attached for nearly three days (63.85 h) in October 

2010 and revealed a diel diving pattern.  During the night, the whale remained near the surface, 

88% of the time within 15 m of the surface.  Daytime dive behavior was characterized by 

repeated deep dives to depths >200 m, likely at or near the seafloor.  Some of these deep dives 

included lunges near the seafloor associated with foraging (Soldevilla et al., 2017).  This type of 

bottom feeding is unusual for members of the complex.  It is not known what they may have 

been feeding on at those depths.  Lanternfish (Myctophidae) and hatchetfish (Sternoptychidae) 

are abundant members of pelagic waters of the GOMx (Ross et al., 2010; Stickney & Torres, 

1989), and some species may serve as prey.  Further work to identify primary prey species and 

foraging behaviors is needed and will be important for identifying potential threats and important 

habitat for these whales.  

 

Finally, estimates of abundance for the whales in the northern GOMx are under 100 individuals.  

Broad-scale aerial and ship-based line transect surveys to estimate cetacean abundance have been 

conducted in the northern GOMx as far back as 1991.  Eleven abundance estimates have been 

made between 1991 and 2009 and range between zero and 44 [See Rosel et al. (2016) for 

summary of surveys].  Surveys with the lowest estimates covered waters primarily of the western 
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GOMx, supporting their rarity in this region.  It should be noted, however, none of these surveys 

were focused on estimating abundance of a rare species and precision of all estimates is poor.  

The current best estimate of abundance is 33 (CV = 1.07) (Waring et al., 2015).  Future work 

dedicated to estimating abundance within the known habitat in the northeastern GOMx is 

needed. 

 

4.3 | Conservation status 

The small population size and associated deleterious genetic effects (e.g., inbreeding depression, 

loss of potentially adaptive genetic diversity and accumulation of deleterious mutations), and the 

restricted distribution alone, place these whales at high risk of extinction and they are of grave 

conservation concern.  They recently have been listed as Endangered under the U.S. Endangered 

Species Act of 1973 and are listed as a Critically Endangered subpopulation on the IUCN Red 

List (Corkeron et al., 2017).  Additional significant threats include vessel collisions, 

anthropogenic noise during seismic surveys, habitat destruction, modification or curtailment of 

habitat range during energy exploration and development, oil spills and oil spill response, and 

marine debris (Rosel et al., 2016).  Fishery interactions may also pose a threat, but more research 

is necessary to determine the level of impact from this threat (Rosel et al., 2016; Soldevilla et al., 

2017).  The recent analyses of dive behaviors by Soldevilla et al. (2017) indicate these whales 

may feed near the seafloor in a region where some bottom longline fishing occurs, raising the 

risk of fishery interactions.  The surface behavior identified by the same study suggests these 

whales may spend a considerable amount of time at night within the first 15 m of the water 

column.  This behavior significantly raises the risk of ship strikes.  Two whales have shown 

evidence for ship strike.  An adult, lactating female stranded in Tampa Bay, Florida with injuries, 
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including separated vertebral, lung damage, and subdermal contusions, consistent with impact 

caused by a large object.  In 2019, a free-swimming whale was observed in the northeastern 

GOMx with a severely deformed spine posterior to the dorsal fin consistent with a vessel strike 

(Fig. 6).  These two cases illustrate the anthropogenic threat that vessels may pose to this 

population.  Finally, the 2019 whale that stranded in the Everglades (FMMSN1908, USNM 

594665) was found to have a sharp piece of intragastric plastic approximately 6.6l x 6.2w x 0.2d 

cm in dimension.  The plastic caused hemorrhaging and acute gastric necrosis in the second 

stomach chamber.  The whale was thin and because the necropsy identified no other infections or 

pathologies that could be attributed to the animal’s death, it was concluded that the ingestion of 

the plastic led to the stranding and subsequent mortality of this whale. 

 

Continued efforts to fully characterize dive behavior, feeding strategies, and prey preference will 

improve management strategies for this Endangered whale.  In addition, ongoing research to 

determine whether they regularly use habitat in the western and/or southern GOMx will aid our 

understanding of their distribution.  If they are shown to use these waters with regularity, further 

work to determine the relationship of such whales to those utilizing the northeastern GOMx is 

critical to developing a full picture of the status and range of these whales.  Finally, a better 

understanding of whether they once were a component of the ecosystem in the north-central and 

western GOMx, as suggested by Reeves et al. (2011) based on Yankee whaling records, prior to 

the extensive alteration of habitat through energy exploration and development is needed.  If they 

previously utilized habitat in the western GOMx, understanding why they may have abandoned 

the habitat will significantly aid conservation and recovery plans for these whales. 
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4.4 | Conclusion 

The data presented here provide multiple lines of evidence (genetics, morphology, distribution) 

indicating that the Bryde’s-like whales in the GOMx are a previously unnamed species.  The 

morphological and genetic lines of evidence that distinguish these whales in the GOMx as a new 

species also provide equivalent support for re-elevating the two subspecies of B. edeni to species 

level, B. edeni Anderson, 1879 and B. brydei Olsen, 1913.  Here, the only species that would 

then utilize the English name Bryde’s whale would be B. brydei, the larger, more pelagic 

balaenopterid distributed world-wide in tropical and subtropical oceans.  Eden’s whale would 

refer to B. edeni, the smaller animals found, to date, in coastal and shelf waters of the tropical 

and subtropical Indian and western Pacific Oceans.  The terms “Bryde’s-like whale” and 

“Bryde’s whale complex” would not be necessary any more.  Future investigation of other 

coastal populations, such as the population off the coast of south Africa (Best, 1977; Best, 2001; 

Penry et al., 2018) may continue to identify new subspecies.  

 

We recognize the lingering unfinished, but ongoing, taxonomic work in this group, i.e., 

genetically verifying the holotype of B. edeni and the need to identify and designate a neotype 

specimen and its associated genetic signature for B. brydei.  Some may not yet support species 

rank for these lineages, but might rather support continued recognition of subspecies status until 

these underlying taxonomic details are worked out.  However, a convincing volume of evidence, 

both morphological and genetic, has grown substantially in recent years (Kershaw et al., 2013; 

Penry et al., 2018; Rosel & Wilcox, 2014; Sasaki et al., 2006; Wada et al., 2003; Yamada et al., 

2006; Yamada et al., 2008) and multiple independent lines of evidence are consistent with 
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species level differences for all members of the “Bryde’s whale complex” and now for the new 

evolutionarily distinct species found in the GOMx.  

 

4.5 | Systematics 

 

Order Cetartiodactyla Montgelard, Catzefils and Douzery, 1997 

Cetacea Brisson, 1762 

Family Balaenopteridae Gray, 1864 

Genus Balaenoptera Lacépède, 1804 

Balaenoptera ricei sp. nov. 

Rice’s whale 

Figs. 3, 7, 8; Table 1; Figs. S8 – S10 

 

 

Holotype and Type Locality 

USNM 594665, an adult male, 1,126 cm, stranded on 29 January 2019 near Flamingo, Florida 

Bay, Gulf of Mexico at the outer edge of Everglades National Park, Florida (25.0344˚ -

81.0185˚).  The skull (Figs. 7, S10) and complete skeleton and baleen are deposited in the U.S. 

National Museum of Natural History.  The full mtDNA control region sequence for the holotype 

has been placed in GenBank with accession number MN017985.  
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Lowery (1974) reported a skull found on the Chandeleur Islands, St. Bernard Parish, Louisiana 

in June 1954.  This specimen is housed in the Louisiana State University Museum of Natural 

Science (LSUMZ 17027) and was originally identified as a fin whale.  We sequenced the 

mitochondrial DNA control region of this specimen and identified it as a Rice’s whale.  

Unfortunately, the skull is missing a number of important bones, including the premaxillae, 

nasals, lacrimals, jugals, and pterygoid hamuli.  Photographs of the skull are in Lowery (1974) 

and Figs. S3, S4. 

 

A complete skull and skeleton of a 1,105 cm immature male whale that stranded in New 

Hanover County, North Carolina (34.07° -77.88°) on March 13, 2003 was deposited in the U.S. 

National Museum of Natural History under specimen number USNM 572922.  The whale was 

genetically confirmed to be a Rice’s whale (Rosel & Wilcox, 2014).  Best (2007) published 

photographs of the skull of this specimen and assigned it as B. edeni.  Photographs of the skull 

are also in Fig. S5. 

 

On 4 October 2009, a 1,265 cm adult female whale stranded in Tampa Bay, Florida (27.91° -

82.43°) and the carcass was buried in Fort De Soto Park, Pinellas County, Florida.  The whale 

was genetically confirmed as a Rice’s whale (Rosel & Wilcox, 2014).  In March 2018, the 

remains were excavated in the hopes of finding an intact skull to serve as a type specimen.  

Unfortunately, the skull had been crushed during burial and most of the specimen lay in water 

for the nine years it was buried.  The remains of the skull and a nearly complete vertebral column 

were retrieved and deposited in the Florida Museum of Natural History in Gainesville, Florida 

with accession number UF33536. 
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Diagnosis 

Balaenoptera ricei differs from B. e. edeni and B. e. brydei in the following morphological 

features: the nasals taper and curve laterally at the posterior end and have a smooth margin, 

meeting the medial-posterior margin of the ascending process of the maxilla; there is a broad gap 

between the nasal bones that does not narrow posteriorly created in part by the frontal bones 

which protrude anteriorly between the posterior end of the nasals (Fig. 8).  Rice’s whale can also 

be differentiated from all other species of rorqual baleen whales based on molecular genetic 

characters, as shown in the phylogenic analyses of the mtDNA control region (Table 3, Fig. 2).  

Within the 305 base pair alignment of the 5’ end of the mtDNA control region, ten diagnostic 

sites differentiate B. ricei from both B. e. brydei and B. e. edeni (Table 2).   

 

Description 

The Rice’s whale is a medium-sized rorqual whale.  They appear to be larger than Omura’s 

whales and smaller than Bryde’s whales, B. e. brydei, but, based on limited samples, about the 

same size as Eden’s whales.  To date, the largest verified Rice’s whale was 1,265 cm in length (a 

lactating female) and the largest male was 1,126 cm.  Rice’s whales have a falcate dorsal fin 

(Fig. S6).  In the holotype specimen, the dorsal fin was located approximately 2/3 of the way 

back from the snout.  The flippers are uniformly dark.  Although sample sizes are small, the 

ventral grooves/pleats reach to or just past the umbilicus; in the holotype specimen 1 pleat 

extended 36 cm past the umbilicus and two additional pleats extended past the umbilicus but 

were not measured (Table S4).  The number of pleats counted on the holotype specimen at the 
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flipper insertion was 27 to the central midline making a total of 54 pleats.  These whales exhibit 

no external asymmetrical pigmentation on the lower jaws, thereby differentiating them from the 

asymmetrical jaw coloration seen in fin whales and Omura’s whales.  Body color is uniformly 

dark charcoal gray above, including both the upper and lower jaws, and light to pinkish 

countershading ventrally.  Some whales exhibit diffuse white washes on the body around the 

base of the dorsal fin and/or along the sides but to date no consistency in the pattern across 

individuals has been seen (Fig. S7).  The fringe of the baleen plates is uniformly cream colored 

throughout the entire rack, the anterior baleen plates are cream colored on both sides, with a 

distinct posterior transition to black plates (Fig. 3).  Plate count for the holotype specimen was 

264 on the left side.  A total of 224 plates were counted on the right side but approximately 60 

cm of the baleen rack of the right side was not accessible making this is an incomplete count. 

Mead (1977) and Kato and Perrin (2018) indicated that the baleen bristles of members of the 

Bryde’s whale complex are coarser than those of sei whales, and we can confirm, based on a 

sample size of three, that the baleen bristles of Rice’s whales from the GOMx are coarser than 

that of a sei whale that stranded in the GOMx in 1994.  However, no comprehensive analysis of 

bristle diameter across all the Bryde’s whale taxa has yet been performed.   

 

The vertebral formula of the holotype is cervical (7) + thoracic (13) + lumbar (13) + caudal (20) 

= 53.  There were 13 ribs on either side and the head of each first rib is bifurcated.   

 

Several other unique features were noted in the skeleton of the holotype.  Junge (1950), 

Lönnberg (1931), and Omura (1959) describe the stylohyal bones of Bryde’s whales as generally 

longer than they are wide with some degree of curvature.  The stylohyal bones of the holotype of 
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B. ricei had little curvature to them and are very broad (Fig. S9).  In addition, the pelvic bones of 

the holotype specimen are nearly straight, with only a very small projection on one side (Fig. 

S9).  

 

Etymology 

The specific name, ricei, is in honor of renowned American cetologist Dale W. Rice (1930-

2017).  We choose this species name to commemorate Dale W. Rice who had a distinguished 60-

year career in marine mammal science and wrote the seminal volume “Marine Mammals of the 

World” (Rice, 1998), which provided the first comprehensive worldwide review of the 

systematics and distribution of all marine mammal species.  He was the first researcher to 

recognize that Bryde’s whales are present in the GOMx (Rice, 1965).  We propose Rice’s whale 

as the common English name. Naming it after a person is consistent with the other members of 

the complex: Eden’s whale (B. e. edeni) having been named after Ashley Eden, a British 

Commissioner (Anderson, 1878 [1879]), Bryde’s whale (B. e. brydei) named after Johan Bryde, 

a Norwegian businessman and whaler (Olsen, 1913), and Omura’s whale (B. omurai) was named 

after the Japanese cetologist Hideo Omura (Wada et al., 2003). We note that the common name 

‘Gulf of Mexico whale’ has been used for this species. 

 

Nomenclatural Statement 

A Life Science Identifier (LSID) was obtained for this publication: 

urn:lsid:zoobank.org:pub:ACA4D8E5-1373-4D26-931F-0A657EEDE4CC 
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Comparison 

Externally, Rice’s whale is separated from all other balaenopterid whales except those in the 

Bryde’s whale complex by the presence of three longitudinal ridges on the rostrum; one in the 

center and two lateral ridges (Fig. 1).  Omura’s whale lacks these prominent lateral ridges, 

instead having faint ridges visible only in certain viewing conditions (Cerchio et al., 2015).   

 

As described in Wada et al. (2003), the vertex of the skull, including the shapes and extent of the 

ascending process of the maxilla (APM), the nasals, frontals, premaxillae serve as much of the 

defining morphological characteristics that separate members of the Bryde’s whale complex 

(Fig. 8).  In this region, B. ricei is clearly differentiated from B. e. edeni by the shape and extent 

of the ascending process of the maxilla which broaden only slightly at the posterior end, more 

similar in shape to B. e. brydei than B. omurai or B. e. edeni, with B. e. edeni being distinctive in 

its slender ascending process of the maxilla with rounded posterior end (Fig. 8, S10).  B. ricei 

also differs from B. e. edeni in the shape of the nasals (triangular versus rectangular), and the 

extent of the frontals, which are exposed as a thin strip or belt between the ascending processes 

of the maxilla, the posterior end of the nasals and the supraoccipital, rather than the broad 

exposure of the frontals seen in B. e. edeni.  B. ricei is most easily differentiated from B. omurai 

by the posterior end of the premaxillae which reach the frontals in B. ricei but not in B. omurai 

(Fig. 8).  In addition, the alisphenoid is in contact with the squamosal (Fig. S8) while it is 

separated from the squamosal bone in B. omurai (Wada et al., 2003).  Finally, B. ricei can be 

distinguished from B. e. brydei by the shape of the posterior end of the nasals which curve 

laterally and have smooth margins, while in B. e. brydei the posterior end of the nasals remains 

relatively straight and the posterior margin is crenulated.  In addition, the frontal bones wrap 
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around and extend anteriorly into the space between the posterior end of the nasals, creating a 

significant space or gap between the nasal bones along their entire length. 

 

Finally, B. ricei is unambiguously discriminated from all other balaenopterid whales by DNA 

sequence of the mitochondrial genome.  Ten diagnostic sites in the 5’ end of the mitochondrial 

control region (between nucleotide positions 15536-15818 of the B. e. brydei mtDNA genome 

GenBank accession number AB201259) separate B. ricei from all members of the Bryde’s whale 

complex (Table 2).  Similarly, mitochondrial cytochrome b and cytochrome oxidase I genes 

exhibit multiple fixed differences between B. ricei and B. e. edeni, B. e. brydei, and B. omurai 

(Rosel & Wilcox, 2014).  

 

Distribution  

Based on vessel and aerial survey sightings, the primary core habitat of Rice’s whale is currently 

in the northeastern GOMx, centered over the De Soto Canyon in waters between 150 and 410 m 

depth (Fig. 4).  Recently there was a genetically confirmed sighting in the western GOMx off the 

central Texas coast in 225 m water depth (National Marine Fisheries Service, 2018), and 

preliminary analysis of acoustic recordings from the western GOMx along the shelf break south 

of the Flower Garden Banks National Marine Sanctuary suggest the presence of Bryde’s-like 

whales6 in the same area as two balaenopterid sightings made by NMFS in the early 1990s (Fig. 

4).  While contemporary sightings are primarily confined to the northeastern GOMx, it is 

possible the species historically had a broader distribution in the GOMx.  Reeves et al. (2011) 
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reviewed whaling logbooks from the GOMx and identified records of “finback” whales from the 

north central Gulf south of the Mississippi River delta and in the southern Gulf on the Campeche 

Banks.  As fin whales are not part of the GOMx ecosystem, these were likely Rice’s whales 

misidentified as fin whales (Reeves et al., 2011), suggesting the whale’s distribution was broader 

than we see today. 
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Figure Legends 

 

Figure 1. Aerial photograph of a Bryde’s-like whale in the northeastern Gulf of Mexico.  Photo 

credit: NMFS SEFSC and NEFSC under MMPA permit. 

 

Figure 2. Bayesian reconstruction of phylogenetic relationships among members of the Bryde’s 

whale complex based on 375 bp control region alignment.  Posterior probabilities > 0.90 are 

shown at nodes.  Haplotypes with a * indicate individuals morphologically identified to species 

by Sasaki et al. (2006) and used to identify the species clades.  Length of scale bar is 

proportional to the number of nucleotide substitutions per site.  GenBank accession numbers as 

well as geographic localities where the haplotype has been recorded are included in haplotype 

labels (Atlantic Ocean: WNA = western North Atlantic, ENA = eastern North Atlantic, ESA = 

eastern South Atlantic, GOMex = Gulf of Mexico, CAR = Caribbean Sea;  Pacific Ocean: WNP 

= western North Pacific, ENP = eastern North Pacific, WSP = western South Pacific, ESP = 

eastern South Pacific, CSP = central South Pacific,  ECS = East China Sea, SCS = South China 

Sea, SOJ = Sea of Japan;  Indian Ocean: NIO = northern Indian Ocean, WIO = western Indian 

Ocean, EIO = eastern Indian Ocean; Southern Ocean: SO).  See Table S1 for all sequences that 

were collapsed to each haplotype. 

 

Figure 3. Images from the whale that stranded January 2019 in the Gulf of Mexico (holotype 

specimen USNM 594665, FMMSN1908).  (a) ventral view of body; (b, c) right rack of baleen 

and close up of anterior portion of the rack; (d) right flipper; (e) ventral and (f) dorsal view of the 
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fluke.  Scale bar is 10 cm.  Photos in 3b and 3c were inverted so the dorsal side is up.  Photo 

credit: Florida Fish and Wildlife Conservation Commission. 

 

Figure 4. Distribution of all sightings and strandings of Bryde’s-like whales in the Gulf of 

Mexico and Atlantic U.S. EEZ.  All visual survey sightings (blue circles) recorded as “Bryde’s”, 

“Bryde’s/sei” and ‘Balaenoptera sp.” whales during NMFS vessel and aerial surveys from 1992 

to 2019, including all sightings listed as “Bryde’s/sei whales” or “Balaenoptera sp.” in the 

western North Atlantic and sightings recorded by protected species observers (PSO) on seismic 

vessels (yellow circles) that could potentially have been a baleen whale.  All strandings recorded 

as “Bryde’s whales” (red triangle; presence of rostral ridges confirmed in stranding record or 

photos) or unconfirmed Bryde’s-like whale (black circle; could not confirm presence of rostral 

ridges in stranding record), and genetically confirmed Gulf of Mexico Bryde’s-like whale (green 

square) through May 2019, including the extralimital strandings in the western North Atlantic.  

Green polygon represents the core habitat for the Bryde’s-like whales in the northeastern Gulf of 

Mexico.  The 100 m, 200 m, 400 m and 1000 m isobaths and the U. S. EEZ are shown. 

 

Figure 5. Localities of published Bryde’s-like whale observations in the greater Atlantic Ocean. 

Brown circles represent observations that were also genetically identified as B. edeni brydei.  

Blue circles represent observations that did not include genetic information.  Green polygon 

represents core habitat identified in the northeastern Gulf of Mexico.   

 

Figure 6. Deformation to tail stock, possibly resulting from a ship strike in a Bryde’s-like whale 

from the northern Gulf of Mexico.  Photo credit: NMFS SEFSC under MMPA permit. 
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Figure 7. Images of (a) dorsal, (b) ventral, (c) right lateral, and (d) caudal views of the skull of 

Rice’s whale (holotype specimen USNM 594665).  

 

Figure 8. Vertex of the skulls of (a) Eden’s whale, B. e. edeni (RMNH4003), (b) Rice’s whale, B. 

ricei (USNM 594665, holotype), (c) Bryde’s whale, B. e. brydei (CKU HL19990729), and (d) 

Omura’s whale, B. omurai (NSMT M32505).  pmx = premaxilla, na = nasal, asp = ascending 

process of the maxilla, fr = frontal, oc= occipital. 
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Table 1. Ten measurements of the skull of USNM 594665 (holotype). 

1476 
1477 

Measurement Length (cm) Comments 
Condylobasal length 
Maxillary length 
Zygomatic width 
Exoccipital width 
Occipital condyle width 
Rostrum width at antorbital 
notch 
Maximum nasal width 
Maximum nasal length 
Occipital shield length 

284.4 
204.5 
142.6 
101.6 
25.1 
86.7 

18.8 
32.9 
63.6 

right side as left premaxilla is broken 
right side as left premaxilla is broken  
 
 
 

 

right side  
straight/parallel measurement 
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Table 2. Characteristic attributes (CAs) analysis of the control region (305 bp) for Bryde’s-like 

whales and Omura’s whale identifying 30 diagnostic sites.  n: total number of individuals used in 

the analysis for each taxon.  Grayed cells identify sites diagnostic for a species.  Nucleotide 

positions 15536-15818 correspond to the B. e. brydei mtDNA genome of GenBank accession 

number AB201259. 
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B. e. brydei (n = 629) C A T T T T C T A T A C A T T C T G G A A T T G C A C A C C 
B. e. edeni (n = 67) * * * C * * * * * * * * * C * * C * T * * * * * * * * T * * 
GOMx whales (n = 36) * * * * C * * * * * * T * * * T C * T * G C * * * G T C T G 
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Table 3. Genetic divergence estimates for Bryde’s-like, sei and Omura’s whales based on the 375 

bp alignment of the mitochondrial DNA control region.  Number of individuals (n), number of 

haplotypes (h).  Net between group divergence (dA, Nei 1987) corrected using the T3P model is 

below diagonal, within group divergence is along diagonal, and number of fixed differences 

(number of indels) between taxa above the diagonal. 

1490 

1491 

1492 

1493 

1494 

n 
 

h GOMx 
whales 

B. e. 
edeni 

B. e. 
brydei 

B. 
borealis 

B. 
omurai 

GOMx whales 36 2 0 25 24 22 (1) 51 (8) 

B. e. edeni  22 5 0.103 0.009 20 20 (1) 42 (8) 

B. e. brydei 27 15 0.128 0.102 0.019 17 (1) 39 (5) 

B. borealis 90 10 0.114 0.102 0.083 0.016 41 (9) 

B. omurai 17 5 0.304 0.229 0.246 0.264 0.004 
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Table 4. Compilation of unconfirmed Bryde’s-like whale (identified in stranding record as a baleen whale or “Bryde’s whale” but no 

description or photos to confirm presence of rostral ridges), Bryde’s-like whale (identified in stranding record as a “Bryde’s whale” and with 

written description or photos to confirm presence of rostral ridges), and verified Gulf of Mexico Bryde’s-like whale (confirmed via genetic 

analysis) strandings in the northern Gulf of Mexico and U.S. eastern seaboard.  Lengths are noted as being actual measured length (a) or 

estimated lengths (e) as noted in the stranding data records. 

Date 
Catalog 
Number 

Additional 
Identifiers 

(mm/dd/
yy) Location 

Lat 
(dd) 

Long 
(dd) 

Length 
(cm) Sex Verification 

Data and Source 
for Verification 

Additional 
Citations 

Gulf of Mexico           

Chandeleur Islands, verified GOMx 
Lowery 1974; 
Mead 1977; 

LSUMZ 17027 STR338 
June 
1954 

St. Bernard 
LA 

Parish, 
29.83 -88.83 n/a n/a 

Bryde’s-like 
whale 

genetics; 
study 

present Schmidly 1981; 
Jefferson 1995 

MME 2  8/18/82 
2 km 
Pitre, 

SE of 
LA 

Isle au 
30.13 -89.18 1,500 (e) n/a 

unconfirmed 
Bryde’s-like 
whale 

no photos or 
notation of rostral 
ridges  Jefferson 1995 

SEAN 7128  12/25/82 Southwest Pass, LA 29.03 -89.32 1,160 (e) n/a 

unconfirmed 
Bryde’s-like 
whale 

no photos or 
notation of rostral 
ridges Jefferson 1995 
Top of head could 
not be accessed, 
cannot confirm 

Chandeleur Islands, unconfirmed 

ridges present.  
Ventral grooves 
reach to umbilicus. 

MME 1486 SE2250 11/8/85 
Near Palos Island, 
LA 29.79 -88.89 1,040 (a) M 

Bryde’s-like 
whale 

Likely Bryde's 
whale Jefferson 1995 

Harris and 

MME 1939 
SE2589, 
MME01956 10/28/86 Cameron Parish, LA 29.77 -93.33 990 (e) M 

Bryde's-like 
whale 

photos 
Harris 

show 
1987 

ridges; Richard 1987; 
Jefferson 1995 

MME 5967 
SE4790; 
1-1 

90-
1/8/90 

Freshwater Bayou 
Canal, 1/2 Mile 
West of Mouth, 
Intracoastal City, 
LA 29.53 -92.32 1,067  e) n/a 

unconfirmed 
Bryde’s-like 
whale 

no photos or 
notation of 
ridges  

rostral 
Jefferson 1995 

MME 6574 
SE5716, 
MM9101 1/7/91 

1/4 M West of 
Bunces Pass, Saint 
Petersburg, FL 27.65 -82.75 1,120 n/a 

unconfirmed 
Bryde’s-like 
whale 

no photos or 
notation of rostral 
ridges Jefferson 1995 
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MME 7822 

SE6168, 
MME7822, 
DRC-91-09 5/24/91 

No Name Key, in 
Bogie Channel/ Big 
Pine Key, or Grassy 
Key, FL 24.72 -81.35 

1,140/ 
1,158 (e) n/a 

unconfirmed 
Bryde’s-like 
whale 

no photos or 
notation of rostral 
ridges  Jefferson 1995 

MME 8837 
SE8092, 
LA001-93 6/14/93 

Le Petit 
LA 

Pass Island, 
30.12 -89.43 1,128 (a) F 

unconfirmed 
Bryde’s-like 
whale 

no photos or 
notation of rostral 
ridges  

MME 11756 

SE4038, 
SWF-BE-
8876-B 11/25/88 

Honeymoon Island, 
off Clearwater, FL 28.08 -82.83 693 F 

Bryde's-like 
whale 

photos; 
1993 

Edds et al. 
Jefferson 1995 

STR 339  4/2/65 Panacea, FL 30.03 -84.37 1,158 n/a 
Bryde's-like 
whale photos; Rice 1965 

Lowery 1974; 
Mead 1977;  
Shane and 
Schmidly 1976; 
Schmidly 1981 

STR 
2507 

1923=STR 
 1/11/75 

West Bay Region 
Near Venice/ near 
Tiger Pass, LA 29.12 -89.40 841 M 

Bryde's-like 
whale 

visual observation 
of ridges; Shane and 
Schmidly 1976 

Mead 1977; 
Schmidly 1981;  

USNM 504074 
BAP001, 
CSLP7674 5/29/74 

Tarpon Springs, 
Anclote Key, FL 28.15 -82.77 1,000 M 

Bryde's 
whale 

-like 
photos; Mead 1977 

Gunter and 
Overstreet 1974; 
Schmidly 1981; 
Jefferson 1995 

UF33536 

USNM 
593536; 
MMPL0906; 
SER09-0394 10/4/09 Tampa Bay, FL 27.91 -82.43 1,265 (a) F 

verified GOMx 
Bryde’s-like 
whale 

genetics; Rosel 
Wilcox 2014 

and 
 

USNM 593537 

FLGM11020
6-32; 
SER06-575 11/2/06 Walton County, FL 30.37 -86.35 470 (e) F 

verified GOMx 
Bryde’s-like 
whale 

genetics; Rosel 
Wilcox 2014 

and 
 

0521Be SER05-767 3/28/05 Southwest Pass, LA 28.99 -89.38 914 (a) F 

verified GOMx 
Bryde’s-like 
whale 

genetics; Rosel 
Wilcox 2014 

and 
 

RKB-1403 SE4022  8/20/88 Panama City, FL 30.08 -85.64 450 (p) unk 
Bryde's-like 
whale 

baleen, throat 
groove location, 
size; R. K. Bonde 
unpublished Jefferson 1995 

LSUMZ 033431 
LSUMZ033
43  2/28/82 

near Southwest 
Pass, LA 29.07 -89.29 n/a n/a baleen whale 

no photos or 
notation of rostral 
ridges Jefferson 1995 

MCT20120326 SER12-0585 3/18/12 

North edge 
Chandeleur 
chain, LA 

of 
Islands 

29.98 -88.83 701 (p) n/a 

verified GOMx 
Bryde’s-like 
whale 

genetics; 
study 

present 
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SMM20121101 SER12-0771 10/25/12 

Lonesome Bayou, 
SE corner of Breton 
Sound, LA 29.20 -89.06 780 (p) M 

verified GOMx 
Bryde’s-like 
whale 

genetics; 
study 

present 
 

44DISL091616 
SER16-
00537 9/15/16 

25 miles offshore 
Louisiana, trawl n/a n/a n/a n/a baleen whale bone only  

USNM  594665 

FMMSN190
8, SER19-
00187  1/29/19 

Everglades 
Park, FL 

National 
25.03 -81.02 1,126 (a) M 

verified GOMx 
Bryde’s-like 
whale 

genetics; 
study 

present 
holotype 

Atlantic          
 

USNM 239307  
3/18/192
3 Walnut Point, VA 37.98 -76.47 801-803 M 

Bryde's-like 
whale photos Mead 1977 

USNM 572922 WAM 587 3/13/03 Carolina Beach, NC 34.07 -77.88 1,105 (a) M 

verified GOMx 
Bryde’s-like 
whale 

genetics; Rosel 
Wilcox 2014 

and 
 

MME 8115 
SC-92-1, 
SE6591 1/24/92 

Ash Island, St. 
Helena Sound, SC 32.5 -80.45 790 (a) F 

verified GOMx 
Bryde’s-like 
whale 

genetics; Rosel 
Wilcox 2014 

and 
 

MME  93 
GA8301050
1 1/5/83 Ossabaw Island, GA 31.74 -81.11 660 (e) n/a 

Bryde's-like 
whale 

Stranding record 
indicates rostral 
ridges present  

MME 11032  

SE8345, 
GA8301050
1 9/18/93 Ossabaw Island, GA 31.87 -81.13 510 (a) n/a 

unconfirmed 
Bryde’s-like 
whale 

Highly decomposed. 
No photos or 
notation of rostral 
ridges   

SEAN 1209  11/6/76 Fort Pierce, FL 27.47 -80.33 559 F 
Bryde's-like 
whale 

photos with 
stranding record Schmidly 1981 

USNM 504768 
SEAN3080, 
SE0028 3/14/78 

Fort 
FL 

George Island, 
30.42 -81.41 869 (a) M 

Bryde's-like 
whale 

photos; 
Leatherwood 
Reeves 1983 

and 
Schmidly 1981,  

MME 3360  8/30/87 Amelia Island, FL 30.57 -81.45 975 n/a 

unconfirmed 
Bryde’s-like 
unconfirmed 
Bryde’s-like 
whale 

No photos, animal 
swam away  

SEAN 3212 
SE0064, 
HNN-884,  4/30/78 

"Orange Canal 
between Ogeechee 
river and Rockfish 
creek" 31.92 -81.23 950-953 M 

unconfirmed 
Bryde’s-like 
whale 

No photos or 
notation of rostral 
ridges  Schmidly 1981 
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Figure 1 

 

Figure 2 

 

Figure 3 
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Figure 4 

 

 

Figure 5 

 

 

Figure 6 
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Figure 7 

 

 

Figure 8 
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